I will survive pour les matheux

Cette vidéo est une petite parodie du tube disco des années 70  I will survive réécrite pour les fans de maths qui ont un peu de mal à comprendre les concepts mathématiques de base…

La chanson originale I will survive (Je survivrai) a été interprétée par Gloria Gaynor en 1978. Elle raconte le ressenti d’une femme qui vient d’être plaquée par son petit ami. La chanteuse nous dit qu’elle survivra à cette séparation, qu’elle se passera très bien de la présence de son ex et qu’en aucun cas, elle ne souhaite se remettre en couple avec lui. En bref elle veut vivre sa vie en toute indépendance.

Avec le temps, ce hit planétaire est devenu un symbole de l’émancipation des femmes qui sont tout à fait capables de vivre leur vie en solo sans tutelle masculine, et même allez savoir pourquoi, un hymne homosexuel.

Pour ceux qui ne maîtrisent pas l’anglais, voici les paroles de la chanson :

At first I was afraid, what could the answer be?
It said given this position find velocity.
So I tried to work it out, but I knew that I was wrong.
I struggled; I cried, « A problem shouldn’t take this long! »
I tried to think, control my nerve.
It’s evident that speed’s tangential to that time-position curve.
This problem would be mine if I just knew that tangent line.
But what to do? Show me a sign!

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there’s just one way to find that slope.
And so now I, I will derive.
Find the derivative of x position with respect to time.
It’s as easy as can be, just have to take dx/dt.
I will derive, I will derive. Hey, hey!

And then I went ahead to the second part.
But as I looked at it I wasn’t sure quite how to start.
It was asking for the time at which velocity
Was at a maximum, and I was thinking « Woe is me. »
But then I thought, this much I know.
I’ve gotta find acceleration, set it equal to zero.
Now if I only knew what the function was for a.
I guess I’m gonna have to solve for it someway.

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there’s just one way to find that slope.
And so now I, I will derive.
Find the derivative of velocity with respect to time.
It’s as easy as can be, just have to take dv/dt.
I will derive, I will derive.

So I thought back to Calculus.
Way back to Newton and to Leibniz,
And to problems just like this.
And just like that when I had given up all hope,
I said nope, there’s just one way to find that slope.
And so now I, I will derive.
Find the derivative of x position with respect to time.
It’s as easy as can be, just have to take dx/dt.
I will derive, I will derive, I will derive!

%d blogueurs aiment cette page :